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Abstract--An analysis is presented for turbulent flow in a liquid film which is being dragged along 
a horizontal tube by an axial shear at the film surface. While being dragged along, the film drains 
down the wall due to gravity. The analysis can be applied to a number of horizontal, annular, gas- 
liquid flow problems and an example is given here of its use in analysing condensation in a horizontal 
tube. For this problem, the predictions show limited agreement with the little experimental data 
presently available. 

1. I N T R O D U C T I O N  

There are a number of important practical problems in which a thin liquid film is being 
dragged along by surface shear imparted by a gas flow while the film is also being acted 
upon by gravitational forces in a direction perpendicular to the main flow direction. 
Examples of these flows are horizontal, annular, two-phase flow, condensation inside a 
horizontal tube and evaporation inside a horizontal tube. 

While studying this type of flow, the author found it necessary to develop a theoretical 
model for the film flow which takes account of turbulence in the film. This model is presented 
here and then applied to condensation inside a horizontal tube. Butterworth & Pulling 
{1974) have also used the model to elucidate the mechanisms occurring in gas-liquid 
annular flow in a horizontal tube. 

The analysis of the film involves a number of assumptions, the main ones of which are as 
follows: 
(1) The films are sufficiently thin for the usual boundary-layer simplifications to apply. 
(2) The flow in the film is not changing rapidly with axial distance nor with time. 
(3) The axial flow in the film is much greater than the circumferential flow. This, as is 

shown, allows a great simplification of the equations since the inertial terms may be 
neglected. 

(4) The turbulent eddy-viscosity concept may be used to represent the momentum transfer 
in turbulent flow. 

(5) The eddy viscosity is assumed to be isotropic and governed by the axial flow. The latter 
part of the assumption follows from the assumption that the axial flow is much greater 
than the circumferential flow. 

(6) The eddy viscosity profile is assumed to be the same as that for single-phase flow in a 
tube. 
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2. ANALYSIS OF FILM HYDRODYNAMICS 

2.1 Axial flow in the film 
Consider a point on the tube wall at an angular position 0 from the vertical : this is shown 

in figure 1. The rectangular coordinate system illustrated in this figure is used in the analysis. 
In this, x is the tangential direction, y the radial (inward from the wall) direction and z the 

axial direction. With the assumptions given in the Introduction, the axial equation of 

motion for the film is 

u~ ~xt?uz t?uZt?y t?yC3 { OUz } + u, - (v + ~)Tyy [11 

where u~, ur and u s are the velocities in the x, y and z directions respectively, v is the 
molecular kinematic viscosity and e the turbulent diffusivity of momentum.  

It is shown in the Appendix that the inertial terms in [1] may be neglected provided that 

r ;  ~ v << l [2] 
R ~ + v  

where 6 is the film thickness, R the tube radius and ~ the average of e across the film. Fx + 
is the dimensionless circumferential film flow : 

F2 = r~//~ [33 

where F x is the circumferential mass flow per unit length of tube and/~ is the viscosity. 
Neglecting the inertial terms, [1] becomes 

d"4-- 
( v + e )  d y j  0. [4] 

I 

I 
Figure 1. Coordinate system used in the analysis of the film, 
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For thin films, the shear stress may be assumed to be independent of y. Hence [4] may be 

integrated to give 

1 + dy 

where zo is the wall shear stress. 
If we assume that the turbulent diffusivity profile is the same as that for single-phase 

flow in a tube, [5] can be integrated to give the usual universal velocity profile for turbulent 

flow in a tube. 

u + = y+ ,y+  < 5 [6a] 

u + = -3 .05  + 51ny+,5  < y+ _< 30 [6b] 

u + = 5.5 + 2 .51ny+,y+ > 30 [6c] 

where u + = uz/u* and y+ = u* y/v, where u* = x/(zo/p). 
Using [5], it is evident that [6] is consistent with the following turbulent diffusivity profile 

g 

- = 0 ,  y * - < 5  [7a] 
Y 

y + 

- 1, 5 < y+ < 30 [7b] 
v 5 

e y+ 
- 1, y+ > 30. [7c] 

v 2.5 

The dimensionless axial film flow F + (which is F=/p where F~ is the axial mass flow in the 

film per unit perimeter of tube) is calculated by integrating the velocity profile across the 
film : 

f 
6 +  

F + = u :  dy +. [8] 
0 

Using [6] and [83 gives 

+ = ½ ( 6 + )  2, 6 + _< 5 [9a] 

F + = 1 2 . 5 -  8.05fi+ + 56 + In 6 + , 5 < 6  + < 3 0  [9b] 

F + = - 6 4  + 36 + + 2.56 + l n 6 + , 6  + > 30. [9c] 

There is nothing novel about  the results of the film flow analysis which have been presen- 

ted so far. Similar results have been obtained, with slight variations, by Anderson & Mant- 
zouranis (1960), Travis et al. (1971) and many others. The difference here comes in showing 
that the analysis applies with circumferential flow superimposed on the main axial flow. 
Further, it is clear that there are now more advanced methods of representing the turbulence 
in the film although these methods do not lead to a significant improvement  in accuracy in 
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this type of problem (Hewitt & Hall Taylor 1970). The present approach has the useful 
feature that we can quickly obtain solutions without recourse to lengthy analyses which may 
involve numerical integration. The reason for keeping to a simple turbulence model will 
become clearer in the subsequent sections where the analysis becomes more difficult. 

2.2 Circumferential flow in the film 

The circumferential velocity in the film is represented by 

Ou~ Ou~ c~!~ { Ou~+ (l _ p~/p)gsinO [10] ux ~ .  + u , , ~  - , iv + c ~ ) , )  

where p~ and p are the gas and liquid phase viscosities, respectively and g is the gravitational 
acceleration. 

As before, we can neglect the inertial terms on the left-hand side of [10] provided that [2] 
is satisfied. Integrating [10] therefore gives 

dux ( p p )  [11] ( v + e ) ~ y  = - 3 '  1 -  g s i n 0 + c .  

The constant of integration c is determined by dux/dy = 0 when y = 6. Hence [11] becomes 

du~ (6 - y)(1 - po/p)gsinO 
- [ 1 2 ]  

dy v+s, 

This equation may be rewritten in dimensionless form as 

du 2 6+ _ 3,~ 
- B  

dy c [13] 
1 + -  

where 

g v(1 - PC~P) sin 0 B . . . . . . . . . . . .  [14] (u,) 3 

+ l A x ~ U * "  and 6 + = 6u*/v and ux = 

If we assume that the turbulence is isotropic, we can use the turbulent diffusivity profile 
from [7] in [13] to give, on integration, 

+ B{6+y + ~0,+)2}, y+ < 5 [15a] U X ~ -  _ _  _ _  

+ B{6 + y+ + 6 + I n  y+ ~}, Y+ ux = - ~ -  + 5 < __- 30 [15b] 

{ 2-" 6+ 25]'- v+ u + = B 6+(1 + In6) - ln30- - 2 ] ,  > 30. [15c3 
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The circumferential dimensionless film flow F~ + is calculated from 

y+ 
F + = u+dy + 

o 

by substituting for u + from [15]" 

where 

i.e. 

where the function q~ is given by 
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[16] 

F + = Bc~(6 +) sin 0 [173 

fl = gv(1 - pG/p)/(U*) 3 

B = flsinO 

= 13(6+)3, 6 + _< 5 

[18] 

[19a] 

[19b] ~ b = 5  58 ÷ + (6+)  2 l n - ~ - -  - , 5 < 6  +_<30 

4 ~ = 5  + (6+)  a + l n 6 + 2 1 n ~ -  ~ ,o >3 0 .  [19c] 

Gardner (1972) has pointed out that circumferential velocities in the film cannot be 
greater than the free fall velocity. This gives therefore a further restriction on the validity 
of the present analysis which must be checked for whenever the analysis is used. 

flow 

~"" L "~Rcgion of 
~ o x l o l  f l o w  

Figure 2. Illustration of Chaddock Chato model for intube condensation. 
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3. APPLICATION TO CONDENSATION IN A HORIZONTAL TUBE 

3.1 Background 

A number of analyses of condensation in horizontal tubes (e.g. Chato 1962; Chaddock 
1957) make the assumption illustrated in figure 2 that the tube may be divided into two 
regions around the circumference. In the upper portion of the tube, the condensate flow is 
assumed to be entirely circumferential and, in the lower portion, the accumulated con- 
densate flows axially to the tube exit. The upper-region, heat transfer coefficients and 
condensate behaviour are determined by the Nusselt (1916) type of analysis which was 
applied initially to condensation outside a tube. It is evident, however, that the Nusseh-type 
analysis is a simplification of the actual behaviour since, in practice, the condensate film 
in the upper portion of the tube undergoes some axial flow due to drag from the un- 
condensed vapour. The methods used above in this paper are therefore applied here to 
analyse more fully the upper portion of the tube. 

3.2 Assumptions 

In general, the assumptions are those made previously but, for clarity, these are restated 
here in the context of condensation. It is assumed firstly that [17] is valid. This, of course, 
implies that condition [2] is satisfied. This is ensured here as the analysis is restricted to the 
top of the tube. We further assume that the rate of change of conditions with axial distance 
is small. Thus, the analysis does not apply to the inlet region of the tube where there is an 
initial buildup of axial film flow. For  convenience, we ignore circumferential variations in 
wall shear stress. For intube condensation, such variations occur because of the changes in 
condensation rate around the tube and because the gas phase is effectively flowing in a tube 
with roughness changes around the perimeter caused by asymmetric waves on the film. 
Finally, the entrainment and deposition fluxes are ignored in comparison with the film 
drainage rates and condensation fluxes. 

3.3 Heat transfer in the condensate film 

At a given depth in the film, the heat flux q is related to the temperature gradient as 
follows 

dl 
[203 q =  pC(~ + e) dy 

where C is the liquid specific heat, ~ the molecular diffusivity of heat, e the turbulent diffusi- 
vity of heat and Tthe temperature. We can define a heat-transfer coefficient h for condensa- 
tion as follows 

h = q/(T~ - To) [21] 

where T o and To are the temperatures at y = 6 and y = 0 respectively (i.e. the film surface 
and tube wall). 



AN ANALYSIS OF FILM FLOW AND ITS APPLICATION TO CONDENSATION IN A HORIZONTAL TUBE 

Equation [20] may be integrated and rearranged using [21] to give 

h = p C u * / T  ÷ 

where 
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[223 

•+=fT dY+ [23] 
1/Pr + ~/v 

where Pr is the condensate Prandtl number. 
Now, we can make the usual assumption that the turbulent diffusivity of heat is the same 

as that of momentum. Combining [23] and [7] therefore gives 

T + = 6  +Pr,6 + < 5 [24a] 

T + =  5 [ P r + l n { l + P r ( ~ - - 1 ) } ] , 5 < 6 + _ < P r  [24b] 

7 + = 5  Pr + ln(1 + 5Pr) + ~ln ,~i+ > 30. [24c] 

The last term in [24c] strictly only follows from [23] and [7] when Pr = 1. It is, however, a 
good approximation in other circumstances. Equations very similar, or identical, to these 
have been derived many times before {e.g. Travis et al. 1971) for one-dimensional flow in the 
film. 

3.4 Cont inui ty  equation 

Using the assumptions in Section 3.2 above, the continuity equation is 

dFx 
dO = Rmc [25] 

where m c is the condensation mass flux which is related to the heat transfer coefficient as 
follows 

h = rnc2 [26] 
AT 

where 2 is the latent heat and AT is T~ - To. 
Combining [25] and [26] and writing in terms of the previous dimensionless groups gives 

dF + R A T u * k  Pr 
dO - vZ2p T + [27] 

where k is the condensate thermal conductivity. 
Combining [17] and [27] gives 

d6 + ½A Pr /T + - q5 cos 0 

dO dq5 in [28] ~-+s 0 



678 

where 

D. B U T T E R W O R T H  

DATk(u*) 4 
A - va),g(p _ PG)" [29] 

At the top of the tube, the denominator of the r.h.s, of [28] is zero. Since dr+/dO must be 
finite, the numerator must also be zero. Hence. the film thickness at the top of the tube may 
be determined, by solving the following equation for 5 + 

A = 2T+qS/Pr. [30] 

Having determined 6 + at the top of the tube, [28] could be integrated around the perimeter 
to give the full distribution of 6 + and hence, from [22] and [24] the full variation of heat- 
transfer coefficient around the tube. 

3.5 Comparison with the Nusselt solution at the top o/the tube 

If we solve [30] for 6 + < 5, we obtain 6 + at the top of the tube as follows 

6+ (3 A)'/4 = ~ [31] 

Substituting this back into [24a] and [22] gives 

pCu* 
h -  Pr(3A/2)l/4. [323 

Substituting for A from [29] gives 

~2k32(p _ p~)g] l/4 
h = L  fiJr  J E332 

which is the Nusselt solution for local coefficients at the top of the tube. Note that this 
solution is obtained for all ~ + provided that there is no turbulence in the film. In other 
words, the Nusselt solution still applies even with a superimposed axial film flow provided 
that the axial film flow is insufficient to induce turbulence. 

It is of interest to compare the coefficients obtained with a turbulent film with those 
obtained with the Nusselt laminar film solution for the same conditions. Using [22] and [32] 
gives 

hN u A T ÷ [34] 

where hNu is the Nusselt-solution coefficient obtained from [32]. By varying 6 ÷, it is possible 
to obtain h/hr~u as a function of the independent variable A. Figure 3 shows a plot of h/hNu 
against A for different Prandtl numbers. 

Unfortunately, there is no systematic data to test out this theory. A preliminary examina'- 
tion of the results obtained at Harwell on the in-tube condenser rig has suggested that E34J 
predicts too low. Some experimental points are indicated in figure 3. These data are for 
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F igure 3. Effect o f  shear stress on condensat ion heat transfer coeff icients at the top o f  the tube. 

condensing n-propyl alcohol in a 24.4 mm i.d. tube. Further details of the equipment and 
the experimental technique are given by Butterworth, Hazell & Pulling (1974). 

The wall shear stress for use in the method was calculated from 

R( dpF / 
zo =~- - dz] [35] 

where dpF/dz is the frictional component of the pressure gradient which was calculated from 
the accurate proprietary correlation developed by the Heat Transfer and Fluid Flow 
Service, Harwell. 

One explanation for the underprediction is that waves on the film surface increase the 
mixing within the film and, therefore, increase the heat transfer coefficient. Shekriladze and 
Mestvishvili (1973) have suggested that this effect should introduce a correction factor of 
1.7 for condensation with vapour shear. Such a correction would be more than enough to 
account for the discrepancy shown in figure 3. 

4. C O N C L U S I O N S  

The following main conclusions follow from this paper : 

(1) For the film flow problem considered a criterion is given for when the inertial terms in 
the Navier-Stokes equations can be neglected. 

(2) By ignoring the inertial terms, and introducing a turbulent diffusivity profile induced 
by the axial flow, axial and circumferential velocity profiles for the film are derived. From 
these, the axial and circumferential flows are calculated. 
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(3) The new model is applied to the problem of condensation inside a horizontal tube. 
It was shown that, when turbulence is induced by the axial flow, the heat transfer coefficients 
are increased above those predicted by the Nusselt analysis. The enhancements predicted, 
however, appear to be less than those observed experimentally. This discrepancy may be 
due to waves. 

Acknowledgement--The author would like to thank Dr. R. G. Owen for checking the 
algebra in this paper and for preparing figure 3. 
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APPENDIX 

Order oj magnitude analysis to show when the inertial terms may be neglected 

This analysis is applied for the simpler case of laminar fl0w to illustrate the method. The 
turbulent flow analysis is similar and the required result for turbulent flow is quoted. 
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For fully-developed flow and thin films, the Navier-Stokes equation of motion for axial 

laminar flow is 

Ou~ OUz -- a2uz [ A 1 ]  

u~-~-x+ uy 0y dyZ' 

Introducing the following dimensionless groups 

U x I4 r U z 
Ux = _--, U r = - - a n d  Uz = - -  [A2] 

Uz uz Uz 

where fi~ is the mean axial film velocity (at position 0), x = x/6 and Y = y/b, where b is the 
film thickness. 

Equation [AI] therefore becomes 

~Uz OUzl 02Uz [A3] 
Rez U x ~ -  + U r OY] - 0 y  2 

tT~ 1 17 r I I 
Re~ - - .  Rez - 

c,~ R/b  U z 1 i" 

Following the order of magnitude analysis of Schlichting (1968), I have written the orders 
of magnitude below each term in this equation. In [A3], Re~ is the Reynolds number for 
axial flow in the film (i.e. fiz b/v). 

The continuity equation for the film is 

~U~ OU r 
0---X- + ~Y- = 0 [m43 

R/,f  1 

since OuJOz = 0 for fully-developed flow. Again, the orders of magnitude are written below 
each term. It follows from [A4] that 

Hence, both terms on 1.h.s. of [A3] are of order Re~(fix/fiz)(b/R ). If we assume that this group 
is very much less than unity, [A3] may be written as 

d2Uz 
0 -  d y  2 . [A5] 

As yet, we do not know whether Rez(fix/~z)/(b/R) is small, but this can be checked for in the 
specific problem being analysed. 

In the analysis of a similar problem, that of laminar film flow down an inclined rod, 
Butterworth (1967) assumed, without proof, that the inertial terms in the Navier-Stokes 
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equation may be neglected. The resultant predictions were in good agreement with the 
experimental data. The above argument explains why that analysis was so successful. 

For turbulent film flow, the analysis is similar but starts with [l]. The result is that 

R e ~  ~ 6 v - << 1 [ A 6 ]  
u z R ~  + v 

for the inertial terms to be neglected, where ~ is the average of e across the film. From the 
magnitude of the terms in [A4], [A6] may be rewritten as 

. - - -  << 1 [ A 7 ]  Re~ R g, + v 

which becomes [23 in the text since Rex is the same as 4F +. 

R6sum6--On pr6sente une analyse de l'ecoulement turbulent ou laminaire dans un film liquide qui 
est entrain6 dans une conduite horizontale par un effort de cisaillement axial appliqu6 ~t la surface 
du film. Tout en 6tant entrain6, le film present sur la partie sup6rieure de la paroi s' appauvrit par 
effet de gravit& L'analyse est appliqu6e fi des 6coulements adiabatiques compl6tement developp6s 
d'une part dans l'hypoth6se d'une alimentation du Film par d6position de gouttes, et d'autre part 
dans 1' hypoth6se d'une alimentation par condensation ~t I'int6rieur de la conduite. Les r6sultats ne 
sont compatibles dans aucun des cas avec les donn6es exp6rimentales mais les 6carts peuvent etre 
dub. des facteurs qui ne sont pas inclus dans le mod61e du film liquide. 

Auszug--Es wird eine Analyse der turbulenten Stroemung in einer Fluessigkeitsschicht angegeben, 
die durch axialen Schub in der Schichtoberflaeche laengs eines wagerechten Rohres verschoben 
wird. Waehrend dieser Laengsverschiebung fliesst die Schicht unter Schwerkraftseinfluss auf der 
Wand nach unten ab. Die Analyse wird zunaechst auf voll entwickelte adiabatische Stroemungen 
angewandt, wobei vorausgesetzt wird, dass die abfliessende Menge durch Tropfenanlagerung 
ersetzt wird, dann auf Kondensation im Rohr, wobei Schichtauffuellung durch Kondensation 
angenommen wird. In keinem der beiden Faelle stimmen die Resultate mit Versuchsergebnissen 
ueberein, doch sind die Unterschiede moeglicherweise auf Faktoren zurueckzufuehren, die ausser- 
halb des Modells fuer die Fluessigkeitsschicht liegen. 

Pe3ioMe--l-lpe~icTaBJ1eH anaJiH3 JIaMHHapHoFO tl Typ6y2IeHTHOrO TeqeHHfi B )KII,~IKHX llJ1eHraX, 
roTopbIe FIpOT~FHBatOTC~ Bf[OJlb FOpH3OHTa.~bHO~ TpyfbI llOll ~Ie~CTBHeM OCeBOFO C~BHFa IIO 
HoBepxHOCTH HYieHKH. By~ly'~ii HpOT~trilaaeMb], 3TH naenKn cTeKatoT BHH3 IIO Tpy6e no~l BYlM~IHHeM 
CHJIbI T~0KecTH. I'IepBOHaqaJ1bnO aHaJ1n3 npHJmxen x xopomo pa3BHTblMy a~na6aTnqecKnM 
HOTOKaM B rtpeano.~oxeHHM, tlTO IIOTOK HOHOJIHSIeTC~I 3a CqeT KaHeJIbHblX abIna~eHilfi, a llO3,~Hee-- 
B Hpe./~FIO.IIOXeHI, IFI noFIo.lIHeUHSI 3a CqeT BHyTpHTpy6HOfi KOH~leHCaHHH. Oil B O~IHOM H3 yKa3aHHbIX 
cJlyttaea rlOYly~IeHHble pe3yYlbTaTbl He 6blain CXO~IHbl C 3KCIIepHMeHTaYlbHbIMH 21aHHblMH, HO 91"O 
HeCOOTBeTCTBI, le Mox~eT 6blTb OTHeCeilO qbaKTOpOB, Haxo~nlIltXC~t BHe ,/laHHO~ Mo/IeJ'IH XH,tlKO~ 
HIIeHKH. 


